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Abstract -—The collision of a missile on a deformable cantilever results in a transient followed by a
modal stage of plastic deformation. A theory for strain-hardening (softening) structures that
separates the cantilever into a deforming and a rigid segment results in a distribution of deformation
for the transient stage that is quite ditferent from the results of a pertectly plastic structural model.
Nevertheless, strain-hardening (softening) only slightly increases (decreases) the part of the imitwal
kinetic energy dissipated during the transient stage. The modal stage of deformation for a strain-
hardening body exhibits ditTuse “plastic hinges™ whereas a strain-softening body always has defor-
mation that finally focuses at a point. Except for the extent of the deforming region, the modal
contigurations for strain-hardening and strain-softening structures are almost the same.

INTRODUCTION

The collision of a rigid missile on a slender structural element results tnat feast two stages
of deformation: annitial transient stage where a disturbance travels away from the impact
point and a later “modal™ stage where the spatial distribution ts independent of time. These
stages of dynamic plastic deformation were clearly defined in Parkes™ (1955) analysis of
transverse impact at the tip of a rigid perfectly plastic canttlever. Part of the clegance of
Parkes” solution was i result of the constitutive idealization he considered ; a nigid pertectly
plastic moment curvature relation substantially simplitied the kinematic analysis by local-
izing all detormation in a “plastic hinge™ that travelled away from the impact point. The
hinge slowed as it moved away from the tip and became stationary when it reached the
rootl of the cantilever. When a particle with mass G struck the cantilever with mass pL,
Parkes showed that the final distribution of deformation depended on the mass ratio. With
light missiles (G/pL <« 1) most of the initial kinetic energy was dissipated between the ends
of the beam during the first stage of deformation, whercas with heavy misstles (G/pl. > 1)
almost all of the energy was dissipated tn a modal configuration during the second stage.
Experiments on mild steel beams exhibited these same response characteristics.

Additional impact experiments were performed on mild steel and aluminium alloy
cantilevers by Mentel (1958), Cowper and Symonds (1957), Hall er af. (1971) and Bodner
and Symonds (1962). They concluded that discrepancies between the measured deflections
and predictions of the rigid -plastic theory could be explained as the effects of strain-rate
and large deflection. Strain-hardening was deemed to be a less significant influence on the
deformations of these slender cantilevers,

Static analyses of flexural plastic deformations in thin structural clements have shown
that strain-hardening diffuses the stationary plastic hinges. The plastically deforming regions
spread through a finite volume of material as detormation increases (Reid and Reddy,
19784.b: Yu, 1979). I the moment at every section monotonically increases, these analyses
of one-dimensional strain-hardening structural clements are indistinguishable from non-
lincar clastic analyses. A decercase of the moment within plastically deforming regions can
be caused by dynamic cffects or geometric changes due to large deflections. When this
occurs the scction unloads along a different moment -curvature path from monotonic
loading ; the unloading path preserves the current value of the plastic curvature. Wu and
Yu (1986) have shown that this irreversible aspect of plasticity localizes plastic deformation
in statically loaded cantilevers when the tip deflection becomes large. Localization mostly
affects the cantilevers that are not very flexible.
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The dy namie deformation of strain-hardening beams was considered by Conroy (1952)
who commented that “an intinite number of tocalized plastic regions form along the beam™.
Later analyses of impulsively foaded beams by Florence and Firth (1963) and Forrestal and
Sagartz (1978 obtuined solutions by circumventing the ditficulty thut was present in
transient solutions ; they only considered strain-hardening during the modal stage of detor-
mation. These authors estimated the dynamic response by assuming strain-hardening did
not influence the spatial distribution of detormation. Jones (1967) extended this kinematic
approximation to include the transient stage of deformation by spreading "moving hinges™
over a predetermined length of beam. These approximations for the plastic deformation in
strain-hardening beams do not satisty the vield condition at all times: nevertheless, the
approximations probably provide reasonable estimates for final deflections it the strain-
hardening modulus s small,

Strain-hardening moment-curvature relations for plastically deforming structures are
constitutive idealizations that represent a matenal property and cross-sectional charac-
teristics. Strain-softening, on the other hand. ts an effect caused by either microstructural
or structural damage in a cross-section ; this damage depends on strain (Krageinovic, 1979).
Sandler (1984} made the point that strain-softening s not a material property. Softening
caused by the growth or multiplication of flaws huas a nuatural or characteristic length
associated with the flaw size or spacing. Although these detanls are swept astde by continuum
hypotheses, analyses of stramn-softening continua naturally present a requirement for a
characteristic numimum size of the detforming region. Without this constraint, analyses of
strain-softening continua result in localization of plastic detformation na vamshingly small
region (Bazant, 1976 Bazant and Belytschko, 1985). This localization is a mamtestation
of a material instability. Hence, continuum analyses require an artificial lower limit on the
size of the plastically deforming region Lo ensure a positive rite of encrgy dissipation. This
size effect also causes convergence problems for finite clement diseretizations ol struciures
that exhibit strain-softening : the element size can never be small enough so there is a
representative material property for those clements containing the localized plastically
deforming region (Schreyer and Chen, 1986 ; Pictruszezak and Mroz, 1981). These numeri-
cal analyses achieve convergence for local, rate-independent constitutive relations by once
again introducing some churacteristic size or thick ness for the strain-softening region. Wood
(1968) has described how this same artifice (limitation of localization) was previously used
to achieve stability in static analyses of damageable conerete beams and plates.

The present investigation primarily explains the influence of struin-hardening and
strain-softening on the transient stage of dynamic plastic deformation. For o collision at
the tip of a rigid strain-hardening (softening) cantilever, the entire body 1s instantancously
loaded to the mitial yield moment A, when the collision occurs. Deformations begin
throughout the cantilever at this instant. The detformations are accompanicd by transverse
accelerations that are large at sections near the tip and insignificant near the root. These
accelerations soon reduce the bending moment neuar the tip to less than the current yield
moment so a rigid segment quickly emerges from the tip. This previously deformed but
currently rigid segment grows from the tip until it envelops most of the cantilever. The
curvature at any section develops before 1t becomes a part of the rigrd segment ; all sections
i the rigid segment are unloading from a previously deformed state. Hence, the bending
moment first mcereases and then decreases at all sections that are not very near the root.
The curvature developed at cach section during this cycle is uniquely defined for strain-
hardening beams ; the picture is not so clear for strain-softening structural elements. At a
deforming section in a strain-soltening cantilever, the change tn the bending moment with
time must be negative tor both loading and unloading paths (Fig. ). The loading and
unloading paths arc associated with increasing curvature and no further change incurvature,
respectively. Henee, the sign for the rate-of-change in bending moment cannot be used as
a criterton to distinguish loading and unloading. The theory developed here solves this
dilemma by scparating the cantilever into two regions: (a) a rigid scgment of increasing
length that spreads from the tip. and (b) a deforming segment that shrinks toward the root.
We assume that the root segment is loading and the tip scgment is unloading, ¢ all
detormation develops in the root segment. Furthermore, inertial effects are neglected n the
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Fig. 1. Moment-curvature relations for strain-hardening and strain-softening nigid-plastic sections.
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slowly moving root segment. This theory for plastic deformation of both strain-hardening
and strain-softening structural elements results in dynamics for the transient stage that
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converge to Parkes’ solution as the hardening parameter 2 vanishes.

PROBLEM SETTING AND THEORY

A uniform cantilever of length L and mass per unit length p carries a particle with
mass (7 fixed to the tip (sce Fig. 2). The cantilever has material properties that can be
represented by one of the rigid plastic moment curvature relations shown in Fig. 1. This
idcalization has two propertics: a yicld moment M, and a strain-hardening modulus x

Disp

Vel

Accel.

deformiﬁ

rigid

M deforming | rigid

Fig. 2. Displacement, velocity, acceleration, shear resultant and bending moment distributions for
impulsively loaded cantilevers during the transient stage. The dashed lines represent these variables
at a very early time.
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where x can be etther positive or negative, Curvature K = ALY, ) can develop atany section
of the cantilever only after the bending moment M has been equal to M., Thereatter.
section cither deforms with a change in moment that follows a loading puath or the section
unloads without turther deformation it the moment is less than the current vield moment
M, = M,+xK. The solid lines on Fig. 1 represent loading paths where K = dA dr > 0.
while the dashed lines are unloading paths where K = 0. The moment —curvature relation
tor the loading and unloading paths can be expressed as

M=21,+1K., K>0
M< M, +xK. K=0, ()

The unloading path simply maintains the largest curvature previously developed.

Impact suddenly imparts a transverse velocity ', to the particle at the tip while the
remainder of the cantilever is at rest. The propagation of this disturbance away from the
tip depends on inertia. Guided by Parkes™ analysis, we assume that at any time ¢ the velocity
disturbance is only significant within a length A from the tip and that the cantilever
length is composed of two scgments: an undeforming scgment 0 < Y < A and a plastically
deforming segment A < X < L (see Fig. 2). As the interfuace A moves from the tip towards
the root, a scction located at distance Y from the tip begins to deform on the loading path
at 1 = 0 and stops deforming when Ar) = Y. Furthermore, we assume that the inertia off
the deforming segment A < X < L s negligible., Sinee the sezment near the tp s rigid. the
transverse velogity WX, = ddrcan be cxpressed as

Ho= 1 YA) YA ()

where the tip velocity (7)) = H(0, ). The neglect of inertia effects in the deforming segment
is reasonable since the velocities there remam small in comparison with velocities near the
tip (Ting, 1964).

The shear foree SCY, ) is untformyin the deforming segment A -2 ¥ <0 L when inertia
is negligible as shown in Fig, 20 At the interface between deforming and rigid segments this
force 8y = S(AL 1) cither increases or decreases monotonously with time depending on the
sign ot x. Consequently, the bending moment MY, 1) also either increases or decreases
lincarly with \"depending on the hardening parameter. The moment at the intertace Mis
determined by the curvature A(A, 1) = ¢ W08 thatis developed betore A(r) = V'

My o= M, + 2K, (3

PLASTIC DEFORMATION OF ROOT SEGMENT

Since mnertial forees are neglected in the deforming region, the bending moment varies
lincarly with distance from the deforming undeforming interface at any instant of time.

M root tip
deforming | rigid

Mo |—

Mybr =~ — — = — = m e — =~ =D

tig. 3. Bending moment distribution for strain-hardening cantilever during the transient stage. The
related tinal curvature K is related to the restdual vield moment M by K= (M, = M) x
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M=MW,—-S(Y-Ay). ASX<L 4

where A, (¢) ts the intersection of M(x) with M, that is shown in Fig. 3. This figure shows
typical distributions for M and the residual yield moment M., at an instant during the
transient stage. At cach instant the curvature in the deforming region is related to the shear
resultant at the intertuace by

-

¢ - v
1= =S X=A)). (3
cxe-

At any time the inclination of the beam H (X, #) = ¢ 7. can be obtained by integrating
eqn {3) and applying the boundary condition H7(L.1) = 0,

W= —S.2Ay—L—X)NL-X)2x (6)

Thus the angular velocity in the deforming region is

W' = —[S\Q2A,—L - X)+2S\AJ(L—X)/2x (7)
and at the intertace
Wy o= —[Sv2A = LA+ 25 AL =N 2x (8)

An additional relationship s required at the intertace to ensure that the distribution
of final curvature at sections that are finally i the rigid segment is an analytic function.
Thercetore from (5),

O =dMJdA, = 5 = (A =AY dS A, 9
This constitutive constraint results in an expression for the angulur velocity at the interface,
W= + 80l —A) 24 (10)

DYNAMICS OF EXPANDING SEGMENT NEAR THE TP

The expanding scgment 0 < X' < A(r) is presumed to be unloading so that no further
deformation oceurs. A posteriori we will confirm that at every section throughout this
region, the moment is always less than the magnitude of M, when the section entered the
segment. This rigid segment rotates with an angular velocity d#, /d.X. Hence the velocity
of the tip s

V= =S A(L-A) 22, (rn

Negleeting the small transverse velocity at the moving interfuce, we assume the velocities
and acceelerations in the rigid segment are given by

WX, = V(1 =XA) (12)
W) =1 =X/A)+FXYA/A®, 0< XY <A (13

These accelerations cause a shear resultant at the interface,
Sy = (G+pAR2YWV +pA V2. (14)

Likewise, the moment at the intertace is
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M, = —AS, —pAAF+2A17) 6. (1%)

This moment is the same as the moment M, at the ¢nd of the deforming segment. eqn (4).
e

Mo+AeSy = pAAV+2A1) 6. (16)
These refations for the rotating rigid segment near the tip are the same as those for Parkes’

problem if S, = 0.

NON-DIMENSIONAL EQUATIONS FOR DYNAMIC SYSTEM

The differential equations (9). (11). (14) and (15) for the unknown functions F(s).
Sa{n. A{ry and A,{r) can be expressed in terms of non-dimensional variables

c= bV o s=8L M. Ai=AL i,=A,L (amn

and characteristic parameters for the system
J=Gipl. v=x LMy [=GUE2My ty = plibeM,. (18)
it will be useful to supplement these natural ratios with an additional parameter that

combinces the strain hardenming and impact energy ratios, ¢ = fi7. Also, notation indicating
differentiation with respect to time is defined as

A =dAjidr and £ =dide where t =01y,

The equations deseribing the dynamics of the system with these nondimensional variables

are
S = hy) = 82y (19)
SAL =2 = ~dpr/s (20)
d o
200+ Ar) = 2y (21)
dr
d .. .
{atr) = 6(1 + 445). 22
dr

These first-order equations can be rearranged in a form that is convenient for integration.

ho = —dPris —igyosill = 2)° (23)

5= 230+ A) (320 +4) ~ A Ar (4 + 4) (24
§ = —dprilafl —4)° (25)

f= =234 (35, —24)s]) A+ 4). (26)

The initial conditions for this problem with a shear resultant that is compatible with
the moment distribution shown in Fig, 2 are

by=r=5=0 and =1 fort=0. 27
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Fig. 4. Velocity of tip during the transient stage for light and intermediate mass ratios, { = Gipl..
Ditferential equations for the system are singular for these initial conditions. Soon after the
initial impact, however, eqn (23) can be approximated by

A=3/4 torr«l;

that is, the interface moves away from the tip with a speed that decreases with distance. It
follows that

A=/ (61) (28)
and from egn (26)
¢= —3/20r= —3/20/(67).
Henee the tip speed initially decreases from the impact speed as
r=1-/(61)/2. (29)

The shear resultant at the interface and the hardening parameter 4, can be obtained in the
sime manner,

y = —-4(bV/(6t)/3C (30)
i = J(60)2 fort« I 30

Figure 4 shows the tip velocity during the entire transient stage for impulsively loaded
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Fig. S Fravel of foading unloadmg mterface away from tip during the transient stage for hght and
mntermedtate mass ratios,

cantilevers. Both the duration and the decrease in tip speed for this stage are primarily
influenced by the mass rativ §. When ¢ « L, most of the initial velocity disappears while 2
ts increasing 3 in contrast, when the mass ratio is moderate to large ¢ 2 1L neither the rate-
of-impulse imparted by the shear force nor the inertia of the beam that enters the rigid
segment are large in comparison with the inertia of the mass at the tip, so strain-hardening
mostly atfects the length of the rigid segment (Fig. 5). It only shightly increases the decel-
cration of the tp.

END OF INITIAL TRANSIENT STAGE

The interface between rigid and deforming segments of the cantilever travels away
from the tp durimg an initial transient stage of deformation. For straun-hardening cantilevers
2 > 0, this stage terminates when 2 = 0. The interfuce terminus 4, < 1 can be determined
fromegn (24).

AQRIFA) =3k +s ) (32)

where 4y = 44(1;) and s, = s(z ). The terminal position depends on the hardening par-
ameter ¢ and the mass ratio ¢ as shown in Fig. 6. The subsequent stage of motion has
deformation only in the region 2 < x < 1. This region spreads from the root as the
hardening parameter x and the initial kinetic energy ff increase.

For a strain-softening body x < 0, the condition for a stationary finite-length plastically
deforming region (eqn (32)) is never satisfied. Hence, the first stage terminates when 2 = |
and the second stage of motion has deformation condensed into a point at the root of the
beam.
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Fig. 6. Length of the ngid segment during the modal stage of deformation.

At the end of stage 1 the residual kinetic energy £, = E(1,) can be compared with the
initial kinctic energy E, = G175/2.
&, A
. = | + - ey 33)
L‘n 35 : (

Figure 7 shows that the encrgy dissipated during the transient stage is remarkably insensitive
to the hardeming parameter unless the colliding mass G is very light. For a small mass ratio
¢ where most of the kinetic encergy is dissipated by bending away from the root, strain-
hardening increases the part of the total energy dissipated during the initial stage of
deformation. Strain-softening, on the other hand, reduces the part of the initial kinetic
energy that is dissipated by distributed bending during stage 1.

"MODAL™ STAGE OF DEFORMATION

The remaining kinetic energy £ is dissipated in a stationary mode of deformation
during the period 1, < t < r, where the final time 1, is determined by (1) = 0. For this
period, deformation continues to develop in the segment 4, < v < | of a strain-hardening
cantilever. Since we assume that inertia is negligible in this region, the shear resultant is
uniform and the bending moment increases lincarly with distance from the interface ter-
minus 2,. The initial moment m, = 1 — (4, —4y))s, at the terminus can be used to express
the moment m, (v, r;) within the root segment at the beginning of stage 11,

1.0 T T T T
— -_/.‘
@ e
g osf- ,///::::i"” =
Wy - -
< e R
3 0.6+ .- -
3 Lo
é’ 0.4 }- e KEY 4
2 e -—--BY =-0.25
4 // —“BY=
@ 02| 4 —-—pY: 025
w —--—pY= 10

0.0 | ! 1 )l

0 1 2 3 4 5
1/8=pL/G

Fig. 7. The part of the initial kinetic encrgy that is dissipated during the transicnt stage.
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m, ="1.."("“/.4)‘Vi()»x~fx)~ A€ x< 1. (34)

The moment at any section increases monotonously from an nitial value my; = m(x. 7)) to
the final state m, = m.(x.7.). To satisfy the equations of motion in the rigid segment.
the moment m(4, r} and the shear resultant s(2,.t) at the stationary interfuce must vary
proportionately during stage I1. The bending moment m.(x. z.) in the deforming segment
when motion finally stops s

D= s, 8. (33)

A changein curvature at every section K — K, = M (m>—m) xcorresponds to the increase
in the bending moment during stage I1. The energy dissipated by this plastic deformation
equals the Kinetic energy £ of the system at the beginning of this stage.

ML [t
E, = ‘E-J\ (n[}—l}lf) dvx

B

ML m, N ’”i 25— .
6 _Vl(l;_,'_l) s =20 Si=siHl—=4) . (36)

il

It tollows that the final shear resultant s, can be obtained trom s, and eqns (33) (35).

H

|
"
I~ oo+ }
si(l=40) sl =4

The change in moment during stage H is obtained from this shear resultant. Thus, the final
curviture is completely determined by conditions at the beginning of the final stage because
the deformation is a separable function of spatial and temporal variables during this stage.

The hypotheses in this theory that prescribe the initial and boundary conditions for
stage [T are consistent with the hypotheses that separite the cantilever into deforming and
rigid scgments. A consequence of this approximation is a discontinuity in bending moment
at 4, This discontinuity develops during stage [T with strain-hardening.

A fundamental problem arises when finding the motion of a strain-softening cantilever
during stage I, after the deforming region shrinks to a point. The deforming region has no
length so any further deformation results in an indefinttely large curvature and no energy
dissipation, Other investigations have circumvented this problem by specifying a minimum
length for the deforming region and defining a moment curvature relation which asymptot-
ically approaches a positive moment as the curvature increases. Alternatively, a ditferent
constitutive relation can be defined for the localized region, i.¢. a moment -rotation rather
than a moment curvature relation (Martin, 1988). Parkes™ analysis of the seccond stage
followed the latter route. Neither of these paths develops from the constitutive relations
considered here so we have not caleulated any final deflections for strain-sottening

)

so= = i 2P A IO (G - 4))

cantilevers.

CALCULATION OF DYNAMIC RESPONSE

The time-dependent behaviour of the system during stage [ was examined by solving
eqns (23) (26) using a Runge-Kutta procedure. Initial conditions (28) -(31) were used to
start this calculation at time t = 10 "%, Thus, the motion of the cantilever and its moment
distribution were calculated as functions of time for typical values of the impact parameters.

The final curvature at scctions 0 < v < 4, was obtained from the moment M, when
the section passed into the rigid (unloading) region. The root section of strain-hardening

* The condition 4 < 0 for t > ¢, is not possible since it results in a negative rate of energy dissipation.
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Fig. 8 Fial distribution of curvature for an energy ratio i = G128, - 0.5

cantilevers continues to deform while ¢ > 0 so the curvatures in the section 4, < v < 1
increase until the final time 1.,

RESULTS AND DISCUSSION

The deformation of strain-hardening cantilevers 1s shown in Fig. 8 for mass ratios
¢ = 0.1 and 1.0. With a heavy mass, most of the initial kinetic energy is dissipated during
stiige [T the small part dissipated in the transient stage is almost independent of the
hardening coeflicient 2. However, the hardening coefhicient doces influence the extent of the
deforming segment at the root during the second stage ; the length of this segment increases
with % uand the increased length of the deforming material tends to diminish the increase in
curvature during this stage. Consequently the effect of strain-hardening on final tip deflec-
tion is more when the mass ratio is large as shown in Fig, 9. With a light mass { < 0.5,
most of the impact energy is dissipated in distributed curvature that develops during the
transient stage of motion. Figure 7 shows that strain-hardening accentuates this effect, that
is the fraction of the impact energy dissipated in stage 11 decreases as hardening increases.
Strain-softening has an unusual effect only at the last of the transient stage when the
interface is almost at the root. Then the shear resultant s, increases very rapidly and there
is a concomitant final increase in curvature near the root.

The discontinuities in curvature that arise at 4, during the modal stage are not apparent
in the final deformed configurations (Fig. 9). These deformed profiles show that strain-
hardening decreases the deformation ; the only apparent effect on the distribution of cur-
vaturc is the extent of the stage Il deforming region when there is a large mass at the tip.
The strain-hardening coefficient x and the initial kinetic energy ratio ff have exactly the
same cffect on the distribution of deformation for all stages of the dynamic response. Hence,
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P, 9. Final dellection of impulsively loaded, stran-hardening cantilevers for light and intermediate
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the final deformation is directly proportional to ff and the effect of increasing ff on the
distribution of curvature ts equivalent to a proportional increase in 2.

Calculations for the distribution of final curvature in strain-hardening and strain-
softening cantilevers have been compired with Parkes’ theory in Fig. 8. The present theory
yields curvature which increases towards the root while the curvature in the pertectly plastic
theory increases with distance from the root. These distinetly different behaviours result
from similar hypotheses ; the difference is a consequence of the assumed moment -curvature
relation. Parkes™ theory assumes that all deformution occurs at a hinge which travels away
from the tip. The segment ahead of the hinge does not detorm although the entire segment
is at yield. Our extension of the theory that considers strain-hardening and strain-soltening
requires deformations throughout the entire root segment : the curvature of the cantilever
increases towards the root as a consequence of the sraric bending moment in the stationary
segment.

In the limit as the hardening (softening) parameter 2 vanishes, the dynamic deformation
of a strain-hardening cantilever continues to have a distribution of curvature which is larger
near the root whereas the perfectly plastic cantilever has larger curvature near the tip.
Despite this difference, these cantilevers have exactly the same energy dissipated by dis-
tributed deformation during stage [in the limit as 2 — 0.

Experiments and numerical analyses of impuct on clasto-plastic cantilevers tend to
exhibit more curvature near the tip in agreement with the pertectly plastic results. Reid and
Gui (1987) caleulated results for an elastic-perfectly plastic cantilever with a light mass at
the tip. This showed an initial stage of dynamic deformation where plastic strains developed
only in a short scgment that travelled away from the tip. Although this may be interpreted
as a diffuse “*plastic hinge™, the bending moment ahead of the deforming scgment was not
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similar to that of the rigid-perfectly plastic theory. The results showed that the plastically
deforming segment was confined by an elastic regton. This pattern of confinement moved
steadily away from the impact point at a speed that was somewhat less than the speed of a
“plastic hinge”. The deforming segment travelled away from the tip until there was inter-
ference with an elastic wave that was travelling in the opposite direction after reflection at
the root. This pattern suggests a dynamic rigid-plastic model with a short plastically
deforming region that travels away from the tip into undeformed sections of the cantilever.
However. all such models were abandoned because they resulted in an underdetermined set
of equations ; there were insutticient boundary conditions to both locate and satisty depen-
dent variables at the ends of the deforming region.

We conclude that the rigid-perfectly plastic constitutive model is unique in predicting
a distribution of curvature for the transient stage of deformation that exhibits elasto-
plastic effects without incorporating elastic deformations. Our model is not realistic for the
transient stage of deformation of either strain-hardening or strain-softening cantilevers
because it neglects elastic effects. Nevertheless, the evolution ol deformation towards a
modal configuration clearly emerges. The present analysis does establish the distribution
of curvature for the modal stage of detormation in strain-hardening cantilevers. This stage
has a finite size for the deforming segment whereas a strain-softening cantilecer always
exhibits localization of deformation into a point at the root. For strain-softening structures
where the bending stitfness remains positive, localized modal deformation can occur only
at a finite distance trom the impact point after a transient stage of detormation. Analyses
of the modal stage for strain-softening structures require a constitutive relation with positive
dissipation for increasing deformation ; the bilincar moment curvature relation considered
here does not sutisty this condition after deformation tocuses at a point. Henee only the
transient stage ol deformation for strain-sottening structures has been analysed. For strain-
hardening scctions, the present analysis is reasonable when most of the detformation occurs
in i modal configuration, that is when the colliding mass is not small,
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