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.·\b<;tract --The collisicln of a missile on a dcformable cantlle\er results in a transient f"llowed by a
m"dal stage of plastic defc'rmati'ln. " theory for strain-hardening (softening) structures that
separates the cantilever int,' a deforming and a rigid segment results in a distribution of deformati"n
fClr the transient stage th,lt is '1ulle dilferent from the results of a perkctly plastiC structural nwdd.
;\en:rthdess. strain-hardening (sc.1ftcning) only slightly inercases (dccrcases) the part of the mitial
kinetic encrgy dissipated during the transient stage. The lllodal stage of dd,'rmati"n for a strain­
hardening lwdy e~hlhits dilfuse "plastic hinges" whereas a strain-softening hody always has ,lefor­
nhlti,'n that tinally f,'cuses at a p"int. E"ept for the e~tent of the dd,mlllng region. the Illll,bl
contigurations for stram-hardening and strain-Sl1ftening structures are alll1l'St the sallle.

I:"TRODUCTION

The \:ollision of a rigid missile on a slender stru\:tural clement results in at least two stagt.:s
(11' dt.:flll'mation : an initial transient stage where a disturoalKe travels away from the impa\:t
point and a later "nllldal" stage where the spati;t1 distribution is indt.:pendent of time. Thest.:
stages of dynamil.: plastil.: deformation were dearly dclined in Parkes' (1955) analysis of
transvt.:rse impal.:t at the tip of a rigid perkl.:tly plastil.: Glntilever. Part llf the eleganl.:e of
Parkes' solution was a result of the I.:onstitutive idealization he considt.:red: a rigid perfel.:tly
plastil.: moment I.:urvature relation suostantially simplilied the kinematil.: analysis by 10GtI­
izing all deformation in a "plastil.: hinge" that travelled away from the impad point. The
hinge slowed as it moved away from the tip and oel.:ame stationary when it readled the
root of the I.:antilever. When a partide with mass G stnll.:k the cantilever with mass pI-.
Parkes showed that the final distrioution of deformation depended on the mass ratio. With
light missiles (G/pL« I) most of the initial kinetic energy was dissipated between the ends
of the oeam during the lirst stage of lkformation. whereas with heavy missiles (G/pL > I)
almost all of the energy was dissipated in a modall.:onfiguration during the sel.:ond stage.
Experiments on mild sted oeams exhioited these same response characteristics.

Additional impact experiments were performed on mild sted and aluminium alloy
cantilevers by Mentel (195g). Cowper and Symonds (1957). Hall el ill. (1971) and Bodner
and Symonds (1962). They conduded that discrepancies between the measured defkl.:tions
and predil.:tions of the rigidplastil.: theory could be explained as the efll:cts of strain-rate
and large dd1ection. Strain-hardening was deemed to be a less significant influelKc on thc
deformations of these slender cantilevers.

Statil.: analyses of flexural plastic deformations in thin structural elements have shown
that strain-hardening diffuses the stationary plastil.: hinges. The plastically deforming regions
spread through a finite volume of material as lkformation inl.:reases (Reid and Reddy.
197Xa. b: Yu. 1(79). II' the moment at every section monotonil.:ally increases. these analyses
of one-dimensional strain-hardening stnll.:tural elements arc indistinguishable from non­
linear elastic analyses. A decrease of the momcnt within plastically deforming regions I.:an
oe I.:aused by dynamic efTects or geometric I.:hanges due to large ddkl.:tions. Whcn this
OCl.:urs the sedion unloads along a difTerent moment -curvature path from monotonic
loading: the unloading path preserves the current value of the plastil.: curvature. Wu and
y u ( 19X6) have shown that this irreversible aspect of plasti\:ity IOl.:alizes plastil.: deformation
in statil.:ally loaded cantilevers when thc tip detlel.:tion becomes largc. Localization mostly
affects the I.:antilevers that arc not very tkxiole.
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Thc dy n,HTIIC dcfornntlon of ~train-hardcningncam~ \\a~ Cellhllkrcd b~ Cemroy ( 1'):'21
v.ho commcnt.:d that "an mtinitc numncr oflocalilcd pla~tic rcglon~ form aklng thc ncam··.
Lat.:r analy~cs elfimpulsivcly loadcd bcams by Fklrencc and Firth (1965) and Forrcstal and
Sagartl (1\}7SI ontaincd ~lliutillns by cin:umvcnting thc ditticulty that was pn:sent In
transicnt Sellutll1ns: they only considacd strain-hardcntng during the modJI ~tage elf defor­
mation. These authors estimated the dynamic response by assuming strain-hardening did
not intluence the spatial distributieln llflkformation. Jones (1%7) extendcd this kinematic
approximatilln to include the transient stage of deformation ny spreading "moving hingt:~"

over a predt:tcrmined kngth of beam. These approximations for thc plaqic deformation In
strain-hardt:ning neal11~ do not satisfy the yield condition at all times: nt:\crtht:kss. tht:
approximatil1ns prohably provide reasonabk cstimates for tlnal ddkctlelfh if thc straln­
hardt:nmg nllldulus is small.

Strain-hardcning nlllmentcllfvature rt:latilms for plastically deforming structures art:
constitutive ideah/atillns that represcnt a material property and cross-sectional charac­
teristics. Strain-softening. on the other hand, is an dIcet caused hy eitha microstructural
or structural damage in a cross-sectil1n: this damage depends on strain (Krajcirwvic. 1979).
Sandkr (19~-l) madc the pl1int that strain-solkning IS not a material prLlperty. Softening
caused hy thc growth or multiplication of tlaws has a natural or eharactt:ristic kngth
associatcd with thc tlaw si/c or spacing. Although thcse details arc swcpt asidt: hy continuum
hypothl'st:s, all;Iiysc~ of str;lin-softcnillg continua naturally prcscnt a rcquircmcllt for ;1

ehar;lctcrislic mlnllllum Sl/C of thc deforming regioll. Without 111I~ constraint. analyscs 01"
strain-softening cOlltinua rcsull inloGIii/ation of plastic dcformation in a \;lllishingly small
region (Itt/ant. 197(1: Itt/ant and Iklytschko, 19X5). This loeah/ation is a manifestation
of a matcrial instahility.• knec. continuum analyses require an artificial lowcr limit on Ihc
si/c of thc pbstically deforming rcgion to ensure a positive ratc of cncrgy di~sipation. This
sizc dket also causes convergcnce prohkms for tinitc clcment discretizations of structurcs
that exhibit strain-softcning: the ekmcnt sizc can ncver he small cnough so then: is a
n:prescntativc material property I'llI' thllsc clcments containing thc loeali/ed plastically
dcforming regielf] (Schrt:yer and Cht:n. lelX(l: Pictruszczak and ivIroz, 19S I). Tht:st: nunll:ri­
Gil analyses achi.:vc eonvergcncc for local, rate-indcpcndcnt constitutiw n:btions hy oncc
agai n in trod uci ng somc cha ractcristic sizc llr thick ncss for thc st rai n-sllfteni ng rcgion. Wood
(IW1S) has descrihcd how this samc artifice (limitation of localizatinn) was prcviously uscd
to achicvc stability in static analyscs of damagcahlc concrctc hcams and plates.

The prcscnt Invcstigation primarily cxplains tilc influcncc 01" strain-hardcning and
strain-softcning lln thc transic:nt stagc or dynamic plastic defoflll;ltion. For a collision at
thc tip 01" a rigid strain-h;trdcning (softening) L:antilevcr. thc cntirc hody i~ instantancously
loadc:d to the initial yield nwment Mil when the collision OCellI'S. [)cl'llrrnations hcgin
througlwut thc cantikvcr at this instant. Thc deformations arc acc:ompanicd by transvcrsc
aL:cclerations th;ll arc LtrgL' at scctions nC;lr thc tip and insignificant near thc root. Thcsc
accclerations soon rcduL:c thc hcnding mornc:nt ncar thc tip to kss than the eurrcnt yicld
moment so a rigid segmcnt quickly cmcrgcs from thc tip. ThiS prcviou~ly dcformcd hut
eurrcntly rigid scgment grows from tht: tip until it cnvelops most 01" thc cantikvcr. Thc
curvature at ;IIlY scction dC:\'e1ops he/im' it hccomcs a P;Il·t 01" the rigid scgmcnt: all scctions
in thc rigid segmcnt arc unloading rrom a prcviously dcl'llrmcd statc. I knL'c. thc bending
monKnt first increascs and thcn dccrcascs at all scctions thal arc not vcry near thc root.
Thc c:urvaturc dcvell1ped ;tt each scction during this c:ydc is uniquely ddincd for strain­
hardening hcams: thc picturc is not so clear for strain-sol'tL'ning structural clemt:nts. At ;\
dcforming section in a strain-sol"tcning cantilever. thc changc in thc bcndlng momcnt with
timc must hc ncgativc for hoth loading and unloading paths (Fig. I). Tht: loading and
unloadi ng pa ths;1 re associa tcd wi Ih inercasing curva turt: and no furthcr change in eurvaturc,
rcspcetively. I kncc. thc sign 1'01' thc rate-of-changc in hcnding momcnt cannot bc uscd as
a criterion to distinguish loading and unloading. Thc thcory dcvelopcd ht:rc solvcs this
dilemm;1 by scparating thc eantilevcr into two rcgions: (;1) a rigid segmcnt of inL:fcasing
length th;Il sprcads I'rom thc tip. and (h) a defllrming scgnll.:nt that shrinks tel\\ard thc root.
Wc assumc that thc root scgmcnt is loading and thc tip scgmt:nt is unle1ading. i.c. all
deformation dt:velops in thc root scgment. FurthcflllorC, incrtial drects ar.: nt:gkctcd in th.:
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Fig. I. ~h'ment-curvature relations for strain-hardening and strain-softening rigid -plastic sections.

slowly moving root segment. This theory for plastic deformation of both strain-hardening
and strain-softening structural elements results in dynamics for the transient stage that
converge to Parkes' solution as the hardening parameter 'X vanishes.

PROBLEM SE1TING A:"lD THEORY

t\ uniform cantilever of length L and mass per unit length JI carries a particle with
mass (; li,ed to the tip (sec Fig. 2). The cantilever has material properties that can he
represented hy one of the rigid plastic moment curvature relations shown in Fig. I. This
ide~t1i/ation has two properties: a yield moment AI" and a strain-hardening modulus :x
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Fig. :!. Displacement. velocity. acceleration. shear resultant and bending moment distrihulions for
impulsively loaded cantilevers during the transient stage. The d'IShcd lines represent these variahlcs

at a very early time.
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when~"1. can he either positive or negativc. Cunaturc /\ = /\1 Y. () can dcvcl~)p at any sCl"lHln
of thc Glntilcvt:f l1nly aftcr thc hending ml)mcnt .\[ h~h heen eLju~d tL) .\[". Thereaftcr. ~i

seetipn clther deforms with a ehangc in momcnt that fL)lIows a loading path or the scetion
unloads without further deformatiL)n if the moment is kss than thc currcnt yield mL)T11ent
.\[, = '\[" + "1./\. Thc solid lines on Fig. I rcprcsent Ipading paths when: i: = d/\ dt > o.
while the dashcd lines are unll1ading path ... LL herc i: = O. The ml)f11ent ~un~lturc rcl~ltion

for thc loading and unloading paths can he npn:ssed as

.\[ = .\In 4- "1./\. i: > 0

.\/ <: .\1" + "1.[0.... i: = o. (I)

The unIL1ading path simply maint~lins the largest curvaturc previL)llsly dcveloped.
Impact suddenly imparts a transn:rse n:locity I'" to the particle at the tip while the

remainder of the cantilever is at rest. The propagatipn of this disturbance away from the
tip depends on inertia. Guided by Parkes' analysis. we assume that at any time! the velocity
disturhance is only signiticant within a length t\ fwm the tip and that the cantilever
length is composed of two segments: an undeforming segment 0 <: Y <: i\ and a plastically
deforming segment i\ <: X <: L (sec Fig. 2). As the interface i\ moves from the tip towards
the root, a sectil)l1 located at distance Y fnHl1 the tip hegins to deform on the loading path
~It ! = 0 and stops dd'orming when I\(t) = Y. Furthermore, we assume that the inertia or
the defl)rming segment i\ <: Y < " is negligihle. Since the segment ne;lr the tip is rigid, thL'
transverse velocity li'( Y, t) = d Wd! can he l'\pressed as

(2)

where the tip velocity /'(1) c= Ii ·(O,Il. The negkct or inerti~i clkch In the dd'llfming segnlent
is re;lson;,hk sinn: till: velocities there rem~,in sln~t11 in comp;lrison with veloCitics m~ar the
tip (Ting. 1%4),

Th,' she;lr rlm:e SlY, I) is uniform in the dd'llrming segment :\ .' Y <: /. when inerti~1

is nq:ligihk ~,s shown in !"ig. 2. At the inkrface hetween dcforming and rigid scgmcnts this
1~1l'U; .~; \ -'= S( 1\,1l cither inereascs llr decrea ...es mon~)tonlllisly with time depending ~lll the
sign of "1.. ('llnseqllently, the bending mllment J/( Y, I) also either inereases llr decre~,ses

linearly with Y depending on the hardening parameter. The nHlment at the interface .\1 \ is
determined by the curvature /\(A, I) = 1,2 II' ('y 2that is develllped oefore A(I) = Y:

.\/ \ = .\/" +1./\\,

I'I.:\STIC· DITOR:\I.\TI()'\, (11 R()()T SFCi:\ll·sr

Since inertial forces arc neglected in the deforming region, the bending momenl varies
linearly with distam;e from the deforming undd'orming interface at any instant of time.

lip
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Fig. J. Il~ndinc 111llnl~nt ,i1slrihulilln fllr straill·h.lrd~nillcCall1ik\~r durill~ lh~ transil'nl ,tacc. The
relah:J tit;al cur\aturc }.: i, r~lal,d III lh~ rl·,tdual YI~ld I1hlnlelll .If, h~ f: -. (.If,' .If ,) ·x.



D~ naml<: rlastic d<:f,'rmation in strain-hard.:mng and strain-sofll:ning canubcrs 7",'
'-'

(~l

where AII(r) is the intersection of M(x) with J/" that is shown in Fig. 3. This figure shows
typical distributions for ,1.1 and the residual yield moment ,\1,. at an instant during the
transient stage. At each instant the curvature in the deforming region is related to the shear
resultant at the interface by

(~~ W
:XiX.:' = -5,(.\'-A,,). (5)

At any time the inclination of the beam W'(X. tl = (~Wj(~X can be obtained by integrating
cqn (5) and applying the boundary condition W'(L. r) = O.

W' = -S,d2A,,-L-X)(L-.rJ;2:x.

Thus the angular velocity in the deforming region is

and at the interface

(6)

(7)

(X)

An additional n.:lalionship is n:LJuired at the interface to ensure th;lt the distrihution
of linal curvature at sections that an: linally in the rigid segment is an analytic function.
"lh:refon: from (5),

TillS constitutin: constraint results in an e,\pn:ssion for the an~ular velocity at the interface.

( 10)

DY",:\MICS OF EXPANDING SEGr>.lE"'T NEAR TIlE TIP

The expanding segment 0 < X < A(t) is presumed to be unloading so that no further
def'lrmati'ln occurs. A 1'II.l'Iaillri we will confirm that at every section throughout this
region. the moment is always less than the magnitude of .\1\ when the section entered the
segment. This rigid segment rotates with an angular velocity d ~~'.\/d.\'. Hence the velocity
of the tip is

( I 1)

Neglecting the small transverse velocity at the moving interface. we assume the \elocities
and accelerations in the rigid segment arc given by

~hx. r) = V( 1- X'A)

These accelerations cause a shear resultant at the interface,

5., = (G + pAl2)~'"+ pi\. V12.

Likewise. the moment at the interface is

( 12)

( 13)

(I ~)
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(15 )

This moment is the same as the moment .\1 \ at the end of the defonning segment. eqn (~l.

so

(16)

These relations for the rotating rigid segment near the tip arc the same as those for Parkes'
problem if S.\ = o.

NON·DIMENSIONAL EQUATIO:'\S FOR DY:,\t\\IIC SYSTEM

The differential equations (9). (II). (I~) and (15) for the unknown functions ql).
S,(t). AU) and A,,(I) can be expressed in terms of non-dimensional variables

( 17)

and characteristic parameters for the system

( 18)

It will he useful to supplement these natural ratios with an additional parameter that
combines the strain hardening and impad energy ratios. t/> = Ii;'. Also. notation indicating
dilkrentiation with respect to time is dclined as

A= dA/dl and ;: = di.'dr when: r = 1,/ 11 ,

The equations descrihing the dynamics of the system with these nondimensional variables
are

d
f

(2;1" + i.l") = 2.1'
( r

d ., .
I

(/."n = 6(1 +/.".\').
( r

( 19)

(20)

(21 )

(22)

These lirst-order equations can be n:arrangcd in a form that is l:onvcnient for integration.

i:" = -4t/)I"(i.-i.,,);;.,;.(I-;.)~

I' = - 2[.1 + (3i." - '2i.)s)' i.(4~ + i.).

(23)

(24)

(25)

(26)

Thc initial conditions for this rrohkm with a shcar resultant that is comratiblc with
the momcnt distribution shown in Fig. '2 arc

i.n = i. = .I' = 0 and r = I for r = O. (27)
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Ditli:n:ntial equations for the sysll:m arc singular for these initiall.:onditions. Soon after the
initial impal.:t. however. elln (2.1) I.:an be approximated by

;: = 3/). for r « I ;

that is, the interl~ll.:e moves away from the tip with a speed that del.:reases with distanl.:e. It
follows that

). = ,j(6r) (2S)

and from eqn (26)

/; -_ ~n.'· - 3/'J(6)-.'/-s/.--,-<., r.

Hcnl.:c the tip spced initially del.:reases from the impal.:t speed as

r = 1- ,/(6r)/2(. (29)

The shear resultant at the interfal.:e and the hardening parameter ;'0 I.:an be obtained in the
same manner.

.I" = --+(pJ(6r)/3( (30)

).n = J(6r)/2 for r « I. (31 )

Figure -+ shows the tip velocity during the entire transient stage for impulsively loaded
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cantikVl:rs. Bolh the durali,)n and the decrease in tip speed for this slage an: primarily
inlluenced by the m;lss rali,) S. Wh.:n ~ « I. most of th.: initial vdocity disapr.:ars while l_
is incr.:asing: in conlrast. when the llIass ratio is l1lod.:rate to large ( ~ I. neith.:r th.: rat.:­
of-impuls.: impart.:d by the shear force nor the inertia of the beam that entas the rigid
segment an: large in cOl1lparison with the inertia of the mass at the lip. so strain-hardening
lllostly all'cL'ts the kngth of the rigid segment (Fig. 5). It only slightly incre;lses the deed­
eratillll of the lip.

I:'-:n Of I:\ITJ..\L TRA:'-:SIE~T STAGE

The interface between rigid and tkf'(xming segments of the eantikva travds away
fl'llm the tip during an initial transient stage ofdd'ormation. For strain-hardening can tikvers
'1 > o. this stage terminates when;: = O. The interl~lee taminus I., < I can he delerrnined
fl'lll1l eq n (24).

(32)

where 1_", = I.,,(r,) and .\', = .I'(r,). The terminal position depends on the hardening par­
ameter (/1 and the mass ratio ( as shown in Fig. 6. The suhsequent stage of motion has
deformation only in the region I., < .\' < I. This region spreads from the root as the
hardening parameter '1 and the initial kinetic energy !f increase.

For a strain-softening hody '1 < 0, the condition for a stationary linite-kngth plastically
deforming region (eqn (32)) is neva satisfied. I-Icnce, the tirst stage terminates when I. = I
and the second stage of nwtion has dd'ormation condensed into a point at the root of the
heam.
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Fig. b. Lcngth of the rigId segmcnt during the modal stage of deformation.

At tht: t:nJ ofstagt: I tht: residual kindic cnt:rgy £1 = £(rd can be compared with the
initial kint:tic ent:rgy E" = G 1',~/2.

(3.1)

Figurt: 7 ShllWS that the energy dissipatt:d during the transient stage is n:markahly insensitivt:
tll tht: hardening paramekr unless tht: clllliding mass (i is very light. For a small mass ratio
~ whert: most of the kinetic ent:rgy is dissipated hy hending away from the root. strain­
h;mkning increast:s the part of the total energy dissipated during the initial stage of
deformation. Strain-softening. on the other hand. reduces the part of the initial kinetic
energy th;tt is dissipalt:d by distrihuted hending during stage I.

"MODAL" STAGE OF D1TORMATION

The remallllllg kinetic energy 1:: 1 is dissipated in a stationary mode of ddormation
during the paiod r I < r < r ~ where the linal time r 1 is determint:d by 1'( r 1) = O. For this
period. dd'ormation continues to develop in the segment ;'1 < x < I of a strain-hardening
cantilever. Since we assume that inertia is negligible in this region. the shear resultant is
uniform and the bending moment increases linearly with distance from tht: intert~tce ter­
minus ;", Tht: initial moment 111* = 1- ()" --;,,,,)SI at the terminus can be used to express
tht: moment 111 1(x. r,) within the root segl1lt:nt at tht: beginning of stage II.

1.0,..-----,----,-----,----,------,
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o 2 345
1/~ = pL/G

Fig. 7. The part of the initial kinetic energy that is dissipated during the transient stage.
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(-'4)

The moment at any section increases monotonously from an initial value m I = 11/ I (x, r I) to
the final state m~ = m~(x. rJ. To satisfy the equations of motion in the rigid segment.
the moment m(i., r) and the shear resultant s(i. ,. r) at the stationary interface must vary
proportionately during stage II. The bending moment m~(x, rJ in the deforming segment
when mL)tion tinally stops is

(5)

A change in curvature at every section I\~ - 1\1 = Jlo(m~ - m I) x corresponds to the increase
in the hending moment during stage II. The energy dissipated by this plastic deformation
equals the kinetic energy £1 of the system at the beginning of this stage.

M(~L [ 11/. m; J" . 1
= (. 1-. (I ,)+.~ 1 . , (s~-si)(I-I·d·

JX .\ I - I. I .\ I ( - I. I )

It folltlwS that the linal shear resultant s, can he ohtained from SI and eqns (3J) (35).

{ [ , J '}. - ..'., . ",' I . ( 11/. III ~
.\.' - - .\ I + _c/J( I +- 1.,.\)1 1(\ -1'1) I - . ' +., ". .

.\ ill - I. I ) .\ I (I - I. I) .

(36)

The change in moment during stage II is ohtained from this shear resultant. Thus, the final
curvature is completely determined hy conditions at the heginning of the linal stage hecause
the deformation is a separahle function of spatial and temporal variahles during this stage.

The hypotheses in this theory that prescrihe the initial and houndary conditions for
stage II arc consistent with the hypotheses that separate the cantilever into deforming and
rigid segmen ts. A eonsel( uence of this appwxi ma tion is a discon ti nuityin hel1lling momen t
at ;'1' This discontinuity deve!t,ps during stage II with strain-hardening.t

A fundamental prohlcm arises when linding the motion of a strain-softening cantilever
during stage II. after the tkforming region shrinks to a point. The deforming region has no
length so any further deformation results in an indefinitely large curvature and no energy
dissipation. Other investigations have cir<.:umvented this prohlem by specifying a minimum
length for the deforming region and defining a moment curvature relation which asymptot­
ically approaches a positive moment as the curvature increases. Alternatively. a ditrerent
constitutive relation can be defined for the localized region. i.e. a moment rotation rather
than a moment curvature relation (Martin, IlJX:-I). Parkes' analysis of the second stage
followed the latter route. Neither of these paths develops from the constitutive relations
considered here so we have not calculated any final deflections for strain-softening
cantilevers.

CAI.CULATIO;-': 01: I>YN:\MIC Rrspo;-.:sr

The time-dependent hehaviour of the system during stage I was examined hy solving
eqns (2J) (26) using a Runge-KUlla procedure. Initial conditions (2:-1)(J I) were used to
start this calculation at time r := 10 I '. Thus, the motion of the cantilever and its moment
distrihution were calculated as functions of time for typical values of the impact parameters.

The final curvature at sections 0 ~ x ~ ;'1 was ootained from the moment AI, when
the section passed into the rigid (unloading) region. The root section of strain-hardening

t The conJition ;: < 0 for r > r I is nol possihle since it results in a negative rate of energy Jissipalil1n.
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cantilevers continues to deform while I' > 0 so the curvatures in the section )_ 1 < X ~ I
increase until the Iinal time r~.

RESULTS :\;'IJD DISCUSSION

The deformation of strain-han.kninl.! cantilevers is shown in Fig. 8 for mass ratios
( = 0.1 and 1.0. With a hcavy mass, most of the initial kinetie energy is dissipated during
stage II: the small part dissipated in the transient stage is almost independent of the
hardening coellicient 2. However, the hardening coellicient does intluenct: the extent of the
deforming segment at the root during the second stage: the kngth of this segment incrt:ases
with 2 and the increased kngth of the deforming material tends to diminish the increase in
curvature during this stage. Consequently the el1i.:ct of strain-hardening on final tip defkc­
tion is more when the mass ratio is large as shown in Fig. 9. With a light mass' < 0.5,
most of the impact energy is dissipated in distributed curvature that develops during the
transient stage of motion. Figure 7 shows th'lt strain-h'lrdening accentuates this effect, that
is the fr'lction of the impact energy dissipated in stage" decreases as hardening increases.
Strain-softening has an unusual effect only at the last of the transient stage when the
interface is almost at the root. Then the she.tr result'lnt S I increases very rapidly and there
is a concomitant final increase in curvature ncar the root.

The discontinuities in curvature that arise at )" during the modal stage arc not apparent
in the final deformed configurations (Fig. 9). These deformed profiles show that strain­
hardening decreases the deformation; the only apparent clfect on the distribution of cur­
v'lture is the extent of the stage" deforming region when there is a large mass at the tip.
The strain-hardening coefficient :x and the initial kinetic energy ratio {/ have exactly the
same effect on the distribution ofdeformation for all stages of the dynamic response. Hence,
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till': final dd'ol'lnation is direl:tly proportional to If and the dkl:t of inl:reasing IJ on the
distrihutilln of I:llrvature is eL(uivaknt to a proportional inl:rease in 1.

Cakulations for the distrihution or linal I:llrvatllre in strain-hardening and strain­
softening I:antikvers have been I:ompared with Parkes' theory in Fig. X. The present theory
yidds I:urvature whidl inl:re~ISeS towards the root whik the I:llrvatun: in the perli:dly plaslil:
tlll.:ory inl:n:ases with distalKe from the rooL These distirH.:tly ditkrent behaviours result
from similar hypotheses; the dil1i:renl:e is a l:onsequelKe of the assumed momentl:urvature
rdation. P~lrkes' theory assumes that all deformation Ol:l:llrS at a hinge which travels away
from the tip. The segmcnt ahead of the hinge docs not deform although the entire segment
is at yidd. Our extension of the theory that wnsiders strain-hardening and strain-softening
retll/ircs dd'orrnations throughout the entire root segment: the curvaturc or the cantikver
incrc~lses towards thc root as a consequence of the static bending moment in the stationary
segmenL

In the limit ~IS the hardening (softening) parameter:1. vanishes, the dynamic deformation
of a str~lin-han.kning I:antikver continucs to ha ve a distribution of curvature whil:h is larger
ncar the root whereas the perli:ctly plastic cantilever has larger curvature near thc tip.
Despite this dilli:renl:e, these cantilevers have exactly the samc energy dissipated by dis­
trihuted dcformation during stage I in the limit as 'J. --> O.

Experiments and numerical analyses of impact on dasto-plastic c,lI1tilcvers tcnd to
exhihit more curvature ncar the tip in agreemcnt with th·.: perkctly plastic rcsults. Reid and
Gui (19X7) calculated results for an c1astic-perli:ctly plastil: cantilever with a light mass at
the tip. This showed an initial stage of dynamic deformation where plastic strains developed
only in a short segment that travelled away from the tip. Although this may be interpreted
as a difTuse "plastic hinge", the hending moment ahead of the deforming segment was not
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similar to that of the rigid-perfectly plastic theory. The results showed that the plastically
deforming segment was confined by an elastic region. This pattern of confinement moved
steadily away from the impact point at a speed that was somewhat less than the speed of a
"plastic hinge", The deforming segment travelled away from the tip until there was inter­
faem:e with an elastic wave that was travelling in the opposite direction after rdlection at
the root. This pattern suggests a dynamic rigid-plastic model with a short plastically
deforming region that travels away from the tip into undeformed sections of the cantilever.
However. all such models \vere abandoned because they resulted in an underdetcrmined set
of equations: there were insutficient boundary conditions to both locate and s<ltisfy d.:pcn­
dent variables at the ends of the deforming region.

We conclude that the rigid-perfectly plastic constitutive model is unique in predicting
a distribution of curvature for the transient stage of defornlation that exhihits elasto­
plastic dTects without incorporating clastic deformations. Our modd is not realistic for the
transient stage of deformation of either strain-hardening or strain-softening cantilen:rs
hecause it neglects elastic effects. Nnertheless. the evolution of deformation towards a
modal configuration clearly emerges. The present analysis docs estahlish the distrihution
of curvature for the modal stage of defNmation in strain-hardening cantilevers. This stage
has a finite size for the deforming segment whereas a straill-solicllill.c! calltilcn'r ahren's
cxltihits {oca!i;;;atiull ur chiimllCltiulI illtu a {)oillt at tlte foot. For strain-softcning structures
where the hending stiffness remains positive, (ocah/ed modal deformation can ~l\;cur only
at a finitc distance from the impact point after a transient stage of deformation. Analyses
of the modal stage for strain-softening structures require a c~}nstitutive relati~l(l with positive
dissipation for increasing deformation: the hili ncar moment curvature relation considered
here docs not satisfy this condition after deformation focuses at a point. Hence only the
transient stage of deformation for strain-softening strm:tures has heen analysed. For strain­
hardening sections, the present analysis is n:asonahle wlH:n most of the deformation occurs
in a modal configuration. that is when the colliding mass is nut small.
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